Molecules (Mar 2014)

Synthesis and Anticancer Activity of Some New Pyrazolo[3,4-d]pyrimidin-4-one Derivatives

  • Khaled R. A. Abdellatif,
  • Eman K. A. Abdelall,
  • Mohamed A. Abdelgawad,
  • Rasha R. Ahmed,
  • Rania B. Bakr

DOI
https://doi.org/10.3390/molecules19033297
Journal volume & issue
Vol. 19, no. 3
pp. 3297 – 3309

Abstract

Read online

3,6-Dimethyl-1-phenyl-1H-pyrazolo[3,4-d][1,3]oxazin-4-one (3) was prepared by hydrolysis of ethyl 5-amino-3-methyl-1-phenyl-1H-pyrazole-4-carboxylate (1) to afford the corresponding carboxylic acid 2, which was reacted with acetic anhydride to give 3. The pyrazolo[3,4-d][1,3]oxazin-4-one 3 was reacted with hydroxylamine hydrochloride, urea, thiourea, thiosemicarbazide, phenylhydrazine and aromatic amines to afford the corresponding pyrazolo[3,4-d]pyrimidin-4-ones 4, 5a,b, 6, 7, 8a–e, respectively. Condensation of pyrazoloxazine derivative 3 with 99% hydrazine hydrate afforded the 5-aminopyrazolo[3,4-d] pyrimidine derivative 9. Coupling of 9 with aromatic aldehydes yielded a series of 3,6-dimethyl-5-(4-substitutedbenzylideneamino)-1-phenyl-1,5-dihydropyrazolo[3,4-d]pyrimidin- 4-ones 10a–e. The new compounds were tested for their antitumor activity on the MCF-7 human breast adenocarcinoma cell line. Almost all the tested compounds revealed antitumor activity, especially 3,6-dimethyl-5-(4-nitrobenzylideneamino)-1-phenyl-1,5-dihydropyrazolo[3,4-d]pyrimidin-4-one (10e) which displayed the most potent inhibitory activity with a half maximal inhibitory concentration (IC50) of 11 µM.

Keywords