A Logical–Algebraic Approach to Revising Formal Ontologies: Application in Mereotopology
Gonzalo A. Aranda-Corral,
Joaquín Borrego-Díaz,
Antonia M. Chávez-González,
Nataliya M. Gulayeva
Affiliations
Gonzalo A. Aranda-Corral
Departamento de Tecnologías de la Información Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Crta, Palos de La Frontera s/n, 21819 Huelva, Spain
Joaquín Borrego-Díaz
Departamento de Ciencias de la Computación e Inteligencia Artificial, Universidad de Sevilla E.T.S. Ingeniería Informática, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
Antonia M. Chávez-González
Departamento de Ciencias de la Computación e Inteligencia Artificial, Universidad de Sevilla E.T.S. Ingeniería Informática, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
Nataliya M. Gulayeva
Departamento de Ciencias de la Computación e Inteligencia Artificial, Universidad de Sevilla E.T.S. Ingeniería Informática, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
In ontology engineering, reusing (or extending) ontologies poses a significant challenge, requiring revising their ontological commitments and ensuring accurate representation and coherent reasoning. This study aims to address two main objectives. Firstly, it seeks to develop a methodological approach supporting ontology extension practices. Secondly, it aims to demonstrate its feasibility by applying the approach to the case of extending qualitative spatial reasoning (QSR) theories. Key questions involve effectively interpreting spatial extensions while maintaining consistency. The framework systematically analyzes extensions of formal ontologies, providing a reconstruction of a qualitative calculus. Reconstructed qualitative calculus demonstrates improved interpretative capabilities and reasoning accuracy. The research underscores the importance of methodological approaches when extending formal ontologies, with spatial interpretation serving as a valuable case study.