Results in Physics (Dec 2021)
Mathematical analysis for the effect of voluntary vaccination on the propagation of Corona virus pandemic
Abstract
In this manuscript, a new nonlinear model for the rapidly spreading Corona virus disease (COVID-19) is developed. We incorporate an additional class of vaccinated humans which ascertains the impact of vaccination strategy for susceptible humans. A complete mathematical analysis of this model is conducted to predict the dynamics of Corona virus in the population. The analysis proves the effectiveness of vaccination strategy employed and helps public health services to control or to reduce the burden of corona virus pandemic. We first prove the existence and uniqueness and then boundedness and positivity of solutions. Threshold parameter for the vaccination model is computed analytically. Stability of the proposed model at fixed points is investigated analytically with the help of threshold parameter to examine epidemiological relevance of the pandemic. We apply LaSalle’s invariance principle from the theory of Lyapunov function to prove the global stability of both the equilibria. Two well known numerical techniques namely Runge–Kutta method of order 4 (RK4), and the Non-Standard Finite Difference (NSFD) method are employed to solve the system of ODE’s and to validate our obtained theoretical results. For different coverage levels of voluntary vaccination, we explored a complete quantitative analysis of the model. To draw our conclusions, the effect of proposed vaccination on threshold parameter is studied numerically. It is claimed that Corona virus disease could be eradicated faster if a human community selfishly adopts mandatory vaccination measures at various coverage levels with proper awareness. Finally, we have executed the joint variability of all classes to understand the effect of vaccination strategy on a disease dynamics.