International Journal of Aerospace Engineering (Jan 2022)

Mixed Cohesive Zone Modeling of Interface Debonding between Propellant and Insulation

  • Huiru Cui,
  • Weili Ma

DOI
https://doi.org/10.1155/2022/8772468
Journal volume & issue
Vol. 2022

Abstract

Read online

High-quality interface between propellant and insulation is the strict requirement difficult to quantify in solid rocket motor. In this study, the mixed mode delamination process of propellant and insulation interface is considered in double cantilever sandwich beam (DCSB) and single lap-joint (SLJ) test. The PPR cohesive zone model (CZM) and bilinear CZM in ABAQUS are introduced in this mixed fracture progress. In order to implement the PPR model in ABAQUS, user subroutine user element (UEL) is programmed for the novel CZM. Two simple pure mode I and mode II fracture problems are designed to check the accuracy of the UEL, and the result of verification is excellent. DCSB and SLJ test and their corresponding results are used again in the same inverse analysis with the two typical effective displacement-based and potential-based CZM. Base on the results, a series discussion and some conclusions are made. The debonding progress of the propellant and insulation interface in DCSB and SLJ test are mixed mode. The PPR CZM is prior in simulation than the bilinear CZM in ABAQUS because the PPR CZM is much more flexible with changeable traction-separation shape. The real normal and tangential displacement at damage initiation shows the unreasonable change in bilinear CZM in ABAQUS under mixed mode fracture. The PPR CZM and bilinear CZM in ABAQUS are all thickness-dependent model. The real initial stiffness and the critical displacement in the bilinear CZM and the real maximum traction in PPR model are dependent on the thickness of cohesive element. The different thickness dependence of the two model is caused by the implementation method.