Metals (Sep 2021)

Effect of Negative Bias Voltage on Tribological Properties under High Relative Humidity Environment and Corrosion Resistance of Boron Carbide Coatings

  • Ping Zhong,
  • Xueqian Cao,
  • Lunlin Shang

DOI
https://doi.org/10.3390/met11101518
Journal volume & issue
Vol. 11, no. 10
p. 1518

Abstract

Read online

Humid air is a very important service environment, in which metal friction parts should be enhanced to offer excellent corrosion resistance and wear resistance. The B4C coating is an excellent candidate material to enhance the corrosion resistance and tribological behaviors. The purpose is to investigate the effect of negative bias voltages on the tribological properties of B4C coatings under a high relative humidity environment. Amorphous B4C coatings were successfully prepared by closed field unbalanced magnetron sputtering technology and its microstructure, hardness, elastic modulus, adhesive force and tribological properties were systematically studied. Results demonstrate that the B4C coatings deposited at each negative bias voltage have a columnar structure and the surface roughness remained unchanged (about 1.0 nm), while the thickness, hardness, elastic modulus and adhesion force increase first and then decrease with the negative bias voltage increasing. Among them, the B4C (−50 V) coating showed the best mechanical properties. It should be noted that the B4C (−50 V) coating with an excellent corrosion resistance also exhibits the lowest friction coefficient (~0.15) and wear resistance (7.2 × 10−7 mm3·N−1·m−1) under humid air (85% RH). This is mainly due to the tribochemical reaction of B4C during a sliding process to produce boric acid at the sliding interface. B4C coatings can provide an excellent corrosion resistance and high wear resistance due to their high chemical stability and high hardness.

Keywords