Bioscience Journal (Apr 2020)
Crotalaria and millet as alternative controls of root-knot nematodes infecting okra
Abstract
The relationship of crops grown in rotation or in succession has increased every day and the use of antagonistic plants and/or non-host plants is one of the most efficient practices of integrated management of nematodes. This study aimed to evaluate the efficiency of crotalaria (Crotalaria spectabilis Roth) and millet [Pennisetum glaucum (L.) Leeke] ‘ADR 300’ in reducing the population of Meloidogyne incognita and M. javanica and in increasing the productivity of okra [Abelmoschus esculentus (L.) Moench] when cultivated in succession. The experiment was conducted in an area cultivating okra (host culture) in rotation, with a history of severe infestation by phytonematoids. The experimental design involved randomized blocks with six treatments and four replicates, with the following treatments: T1, 15 kg.ha-1 of millet seeds; T2, 30 kg.ha-1 of crotalaria; T3, 10 kg.ha-1 of millet + 20 kg.ha-1 of crotalaria; T4, 20 kg.ha-1 of millet + 6 kg.ha-1 of crotalaria; T5, 6 kg.ha-1 of millet + 36 kg.ha-1 of crotalaria; and T6, control. The nematode populations in the soil and roots were evaluated about 60 d after planting okra, and the yield was evaluated at the end of the crop cycle. Simple treatment with millet or crotalaria reduced the nematode population by 61% and 72%, respectively. The millet-crotalaria intercropping treatments reduced the nematode population by up to 85% compared with the control. In terms of productivity, there was an increase of 787 kg.ha-1 in the millet treatment and 2,109 kg.ha-1 in the intercropping treatments. Both the single cultivation of crotalaria or millet and the consortia of crotalaria and millet were effective in controlling the root-knot nematodes, and increased the productivity of okra.