Diagnostics (Apr 2025)

Thoracic CT Angiographies in Children Using Automated Power Injection with Bolus Tracking Versus Manual Contrast Injection: Analysis of Contrast Enhancement, Image Quality and Radiation Exposure

  • Jochen Pfeifer,
  • Deborah Driulini,
  • Katrin Altmeyer,
  • Gudrun Wagenpfeil,
  • Martin Poryo,
  • Christian Giebels,
  • Arno Bücker,
  • Alexander Massmann,
  • Hashim Abdul-Khaliq,
  • Peter Fries

DOI
https://doi.org/10.3390/diagnostics15091103
Journal volume & issue
Vol. 15, no. 9
p. 1103

Abstract

Read online

Objectives: The purpose of this study was to analyze image quality and radiation exposure of thoracic computed tomography angiography (CTA) in children with congenital heart diseases (CHDs) using either manual contrast medium (CM) injection or automated power injectors with bolus tracking. Methods: A total of 137 thoracic CTAs of 120 consecutive pediatric patients were included in this retrospective study. We analyzed the method of CM administration (power injection with bolus tracking (PI) or manual injection (MI)), injection routes, volumes and flow rates of CM. For the evaluation of objective image quality, attenuation values in the heart chambers and great thoracic vessels were determined by region-of-interest (ROI) analysis and signal-to-noise (SNR) and contrast-to-noise (CNR) ratios calculated thereof. Visual image quality was assessed by two blinded readers (four-point Likert-scale) analyzing the presence of artifacts and the depiction of relevant anatomical structures. Effective radiation doses were calculated with dose length products and specific conversion factors. Results: CM administration was performed using PI in 119/137 CTAs, whereas MI was conducted in 18/137. The smallest size of peripheral venous cannulas was 24 gauge in 36/137 (26.3%) cases. Overall mean CM volume was 17 mL ± 16 mL (mean ± SD). In PI, the mean flow rate of CM was 1.52 ± 0.90 mL/s with a range between 0.5 and 5.0 mL/s. When comparing the overall PI population and an age-, size- and weight-matched PI subpopulation (18 cases) with the MI population, attenuation values in Hounsfield units (HU) and CNR values were significantly higher in the PI groups than in the MI group for each relevant cardiac structure (left ventricle, right ventricle, ascending aorta and pulmonary trunk, p = 0.02–0.001). Overall image quality and depiction of cardiac structures were rated significantly better in CTAs with PI (interquartile ranges: “good” to “excellent” (Likert 3–4)) in PI compared with CTAs acquired with MI (interquartile ranges: “fair” to “good” (2–3)) in MI by both readers (p τ = 0.802 (p p = 0.76). There were no complications associated with the CM injections for both application approaches. Conclusions: Automated contrast agent applications with power injectors and bolus tracking ensure better image quality in pediatric CTA, even when low volumes and flow rates need to be applied. There is a slight increase in radiation associated with bolus tracking. This approach represents a suitable imaging technique for the work-up of congenital heart disease.

Keywords