Response of in situ root phenotypes to potassium stress in cotton
Heyang Tian,
Hongchun Sun,
Lingxiao Zhu,
Ke Zhang,
Yongjiang Zhang,
Haina Zhang,
Jijie Zhu,
Xiaoqing Liu,
Zhiying Bai,
Anchang Li,
Liwen Tian,
Liantao Liu,
Cundong Li
Affiliations
Heyang Tian
State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
Hongchun Sun
State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
Lingxiao Zhu
State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
Ke Zhang
State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
Yongjiang Zhang
State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
Haina Zhang
Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semi-Arid Region, Ministry of Agriculture /Hebei Branch of National Cotton Improvement Center, Shijiazhuang, Hebei, China
Jijie Zhu
Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
Xiaoqing Liu
State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
Zhiying Bai
State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
Anchang Li
State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
Liwen Tian
Institute of Industrial Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
Liantao Liu
State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
Cundong Li
State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
Potassium plays a significant role in the basic functions of plant growth and development. Potassium uptake is closely associated with morphological characteristics of the roots. However, the dynamic characteristics of phenotype and lifespan of cotton (Gossypium hirsutum L.) lateral roots and root hairs under low and high potassium stress remain unclear. In this study, potassium stress experiments (low and high potassium, medium potassium as control) were conducted using RhizoPot (an in situ root observation device) to determine the response characteristics of lateral roots and root hairs in cotton under potassium stress. The plant morphology, photosynthetic characteristics, root phenotypic changes, and lifespan of lateral roots and root hairs were measured. Potassium accumulation, aboveground phenotype, photosynthetic capacity, root length density, root dry weight, root diameter, lateral root lifespan, and root hair lifespan under low potassium stress were significantly decreased compared to medium potassium treatment. However, the root hair length of the former was significantly increased than that of the latter. Potassium accumulation and the lateral root lifespan were significantly increased under high potassium treatment, while root length density, root dry weight, root diameter, root hair length, and root hair lifespan were significantly decreased compared to the medium potassium treatment. Notably, there were no significant differences in aboveground morphology and photosynthetic characters. Principal component analysis revealed that lateral root lifespan, root hair lifespan of the first lateral root, and root hair length significantly correlated with potassium accumulation. The root had similar regularity responses to low and high potassium stress except for lifespan and root hair length. The findings of this study enhance the understanding of the phenotype and lifespan of cotton’s lateral roots and root hairs under low and high potassium stress.