Journal of Science: Advanced Materials and Devices (Sep 2021)
High-mobility sputtered F-doped ZnO films as good-performance transparent-electrode layers
Abstract
Point-defect engineering is an effective way to control the mobility and transparent-conducting performance of sputtered fluorine-doped ZnO (FZO) thin films. In this study, doping with fluorine (F) is accomplished through a simple one-step deposition process and is demonstrated to enhance the crystal quality, eliminate the point defects, and boost the mobility as well as the performance of the films. Furthermore, the films’ characteristics are observed to be strongly dependent on F content. At the optimum F content of 1%, the FZO films exhibited the best crystal quality and the lowest concentration of Zn interstitial and O vacancy defects due to F passivation. Moreover, a mobility as high as 45.3 cm2/V and the greatest figure-of-merit performance are achieved for cutting-edge transparent electrode applications. However, a further increase of F content brought about an increased concentration of defects relating to Zn vacancies, especially F interstitials, which yielded the low mobility and poor performance due to the degraded structure.