eXPRESS Polymer Letters (Jan 2013)

Nanospheres and nanocapsules of amphiphilic copolymers constituted by methoxypolyethylene glycol cyanoacrylate and hexadecyl cyanoacrylate units

  • J. Puiggali,
  • I. Valente,
  • L. J. del Valle,
  • M. T. Casas,
  • L. Franco,
  • A. Rodriguez-Galan,
  • D. Marchisio

DOI
https://doi.org/10.3144/expresspolymlett.2013.2
Journal volume & issue
Vol. 7, no. 1
pp. 2 – 20

Abstract

Read online

Nanospheres and nanocapsules of an amphiphilic copolymer having methylated polyethylene glycol and hexadecyl lateral groups were prepared by the solvent displacement method and using confined impinging jet mixers. Degradation, thermal properties and crystalline structure were investigated. Interestingly, pegylated chains hydrolyzed through ester bond cleavage, whereas the more hydrophobic hexadecyl ester groups were resistant to degradation in aqueous media. The copolymer crystallized from the melt, giving rise to spherulites with a negative birefringence and domains corresponding to crystallization of the different lateral groups. Size distribution and morphology of nanoparticles were mainly evaluated by electron microscopy. Nanocapsules were characterized by a stable membrane with a thickness close to 5 nm that allowed efficient encapsulation of a triglyceride oil. Triclosan was selected as an example of a hydrophobic drug to be loaded in both nanospheres and nanocapsules. The release behavior of these dosage forms was clearly different. Thus, the Burst effect was practically suppressed when using nanocapsules; in addition, these showed a sustained, controlled release over a greater time period. Antimicrobial activity of triclosan loaded nanospheres and nanocapsules was evaluated using Gram-negative and Gram-positive bacteria. The former were highly sensitive to the released triclosan whereas the latter strongly depended on the number of particles in the culture medium.

Keywords