环境与职业医学 (May 2023)

Regulating anaerobic metabolism and promoting myocardial ischemia-hypoxia injury by diesel particulate matter and its key component benzo[a]pyrene via targeting oxygen sensors

  • Hao YIN,
  • Ze ZHANG,
  • Liu WU,
  • Yingzhu WANG,
  • Yuxin ZHENG,
  • Xiaoting JIN

DOI
https://doi.org/10.11836/JEOM22416
Journal volume & issue
Vol. 40, no. 5
pp. 491 – 499

Abstract

Read online

BackgroundThe exposure to diesel particulate matter (DPM) and its polycyclic aromatic hydrocarbons (PAH) is closely related to the morbidity and mortality of ischemic heart disease (IHD). However, it is unclear what key components and targets of DPM exposure involve in myocardial ischemia-hypoxia injury and associated mechanisms.ObjectiveTo identify key PAH components of DPM that act on myocardial hypoxic injury, andclarify the role of oxygen sensors-regulated anaerobic metabolism in DPM and key components-induced hypoxic injury and the targets of the key PAH components.MethodsHuman cardiomyocyte cell line AC16 cells were exposed to 0, 1, 5, and 10 μg·mL−1 DPM in a high glucose DMEM medium with 10% fetal bovine serum (FBS) (HGM) or low FBS (0.5%) in high glucose DMEM medium (LFM), for 12 h under 2% O2, and expression of hypoxia-inducible factor-1α (HIF-1α), Bax, and Cleaved-caspase3 was determined by Western blotting. Under normal condition, the cell viability was detected after PAH exposure for 12 h. Under the condition of ischemia-hypoxia model, cells were exposed to 0, 0.005, 0.5, and 5 µg·mL−1 PAH for 12 h, and the protein expression of HIF-1α, Bax, and Cleaved-caspase3 was determined. After exposure to DPM or PAH for 12 h, the contents of pyruvate and lactate in cells were detected. Pretreatment with glycolysis inhibitor GSK2837808A was used to explore the role of glycolysis in DPM and benzo[a]pyrene (BaP)-induced hypoxia injury. A molecular docking technique was used to analyze the binding affinity between PAH and oxygen sensors (prolyl hydroxylase domain-containing protein 2, PHD2, and factor-inhibiting hypoxia-inducible factor 1, FIH1), and the protein levels of PHD2, FIH1, and hydroxyl-HIF-1-alpha (OH-HIF-1α) after the DPM or BaP treatment were further determined.ResultsUnder hypoxia, DPM exposure in the LFM induced the expression of HIF-1α, Bax, and Cleaved-caspase3 (P0.05), other PAH decreased cell viability when the concentration was above 1 μg·mL−1 (P<0.05). All concentrations of BaP induced the expression of HIF-1α protein (P<0.05), and the protein levels of Bax and Cleaved-caspase3 were up-regulated after the 0.5 and 5 µg·mL−1 BaP exposure (P<0.01). After exposure to DPM (1, 5 and 10 μg·mL−1) or BaP (0.5 and 5 μg·mL−1), the intracellular pyruvate and lactate contents increased (P<0.05). The glycolysis inhibitor co-treatment decreased the levels of HIF-1α, Bax, and Cleaved-caspase3 proteins compared with the DPM or BaP exposure group for 12 h (P<0.05). The binding abilities of the five PAHs to the oxygen sensors PHD2 and FIH1 were strong, and BaP was the strongest. Although the DPM or BaP exposure had no effects on the protein levels of PHD2 and FIH1 in AC16 cells (P<0.05), the protein level of OH-HIF-1α was decreased (P<0.01).ConclusionBaP exposure can promote hypoxia and injury of myocardial cells and is the key PAH component of DPM that induces myocardial ischemia and hypoxia injury. BaP exposure inhibits the hydroxylation function of PHD2 on HIF-1α by combining with PHD2, decreases the level of OH-HIF-1α and induces HIF-1α accumulation. And then HIF-1α promotes anaerobic metabolism and accelerates ischemia and hypoxia injury of myocardial cells.

Keywords