Remote Sensing (May 2021)

Delay in Arctic Sea Ice Freeze-Up Linked to Early Summer Sea Ice Loss: Evidence from Satellite Observations

  • Lei Zheng,
  • Xiao Cheng,
  • Zhuoqi Chen,
  • Qi Liang

DOI
https://doi.org/10.3390/rs13112162
Journal volume & issue
Vol. 13, no. 11
p. 2162

Abstract

Read online

The past decades have witnessed a rapid loss of the Arctic sea ice and a significant lengthening of the melt season. The years with the lowest summertime sea ice minimum were found to be accompanied by the latest freeze-up onset on record. Here, a synthetic approach is taken to examine the connections between sea ice melt timing and summer sea ice evolution from the remote sensing perspective. A 40-year (1979–2018) satellite-based time-series analysis shows that the date of autumn sea ice freeze-up is significantly correlated with the sea ice extent in early summer (r = −0.90, p −1) in the Arctic was accompanied by a decline in surface albedo (absolute change of −0.13% year−1), an increase in net short-wave radiation (0.21 W m−2 year−1), and an increase in skin temperature (0.08 °C year−1) in summer. Sea ice loss would be the key reason for the delay in autumn freeze-up, especially in the Laptev, East-Siberian, Chukchi and Beaufort Seas, where sea ice has significantly declined throughout the summer, and strong correlations were found between the freeze-up onset and the solar radiation budget since early summer. This study highlights a connection between the summer sea ice melting and the autumn refreezing process through the ice-albedo feedback based on multisource satellite-based observations.

Keywords