Sensors (Jul 2018)

Lagrange Programming Neural Network for TOA-Based Localization with Clock Asynchronization and Sensor Location Uncertainties

  • Changgui Jia,
  • Jiexin Yin,
  • Ding Wang,
  • Li Zhang

DOI
https://doi.org/10.3390/s18072293
Journal volume & issue
Vol. 18, no. 7
p. 2293

Abstract

Read online

Source localization based on time of arrival (TOA) measurements in the presence of clock asynchronization and sensor position uncertainties is investigated in this paper. Different from the traditional numerical algorithms, a neural circuit named Lagrange programming neural network (LPNN) is employed to tackle the nonlinear and nonconvex constrained optimization problem of source localization. With the augmented term, two types of neural networks are developed from the original maximum likelihood functions based on the general framework provided by LPNN. The convergence and local stability of the proposed neural networks are analyzed in this paper. In addition, the Cramér-Rao lower bound is also derived as a benchmark in the presence of clock asynchronization and sensor position uncertainties. Simulation results verify the superior performance of the proposed LPNN over the traditional numerical algorithms and its robustness to resist the impact of a high level of measurement noise, clock asynchronization, as well as sensor position uncertainties.

Keywords