A Learned-SVD Approach to the Electromagnetic Inverse Source Problem
Amedeo Capozzoli,
Ilaria Catapano,
Eliana Cinotti,
Claudio Curcio,
Giuseppe Esposito,
Gianluca Gennarelli,
Angelo Liseno,
Giovanni Ludeno,
Francesco Soldovieri
Affiliations
Amedeo Capozzoli
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione (DIETI), Università di Napoli Federico II, Via Claudio 21, I 80125 Napoli, Italy
Ilaria Catapano
Consiglio Nazionale delle Ricerche, Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA), Via Diocleziano 328, I 80124 Napoli, Italy
Eliana Cinotti
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione (DIETI), Università di Napoli Federico II, Via Claudio 21, I 80125 Napoli, Italy
Claudio Curcio
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione (DIETI), Università di Napoli Federico II, Via Claudio 21, I 80125 Napoli, Italy
Giuseppe Esposito
Consiglio Nazionale delle Ricerche, Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA), Via Diocleziano 328, I 80124 Napoli, Italy
Gianluca Gennarelli
Consiglio Nazionale delle Ricerche, Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA), Via Diocleziano 328, I 80124 Napoli, Italy
Angelo Liseno
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione (DIETI), Università di Napoli Federico II, Via Claudio 21, I 80125 Napoli, Italy
Giovanni Ludeno
Consiglio Nazionale delle Ricerche, Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA), Via Diocleziano 328, I 80124 Napoli, Italy
Francesco Soldovieri
Consiglio Nazionale delle Ricerche, Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA), Via Diocleziano 328, I 80124 Napoli, Italy
We propose an artificial intelligence approach based on deep neural networks to tackle a canonical 2D scalar inverse source problem. The learned singular value decomposition (L-SVD) based on hybrid autoencoding is considered. We compare the reconstruction performance of L-SVD to the Truncated SVD (TSVD) regularized inversion, which is a canonical regularization scheme, to solve an ill-posed linear inverse problem. Numerical tests referring to far-field acquisitions show that L-SVD provides, with proper training on a well-organized dataset, superior performance in terms of reconstruction errors as compared to TSVD, allowing for the retrieval of faster spatial variations of the source. Indeed, L-SVD accommodates a priori information on the set of relevant unknown current distributions. Different from TSVD, which performs linear processing on a linear problem, L-SVD operates non-linearly on the data. A numerical analysis also underlines how the performance of the L-SVD degrades when the unknown source does not match the training dataset.