Materials Today Catalysis (Sep 2023)

MXene-supported single-atom and nano catalysts for effective gas-phase hydrogenation reactions

  • Yilong Yan,
  • Djibril Sall,
  • Lola Loupias,
  • Stéphane Célérier,
  • Mimoun Aouine,
  • Pascal Bargiela,
  • Mathieu Prévot,
  • Franck Morfin,
  • Laurent Piccolo

Journal volume & issue
Vol. 2
p. 100010

Abstract

Read online

Transition metal carbides are known as efficient catalysts or catalyst supports and two-dimensional carbides (MXenes) offer renewed possibilities to anchor metal atoms and promote catalytic performances. This paper first presents an in-depth study of the elaboration of Pt or Pd-loaded Ti3C2Tx MXenes and their unstacking for gas-phase catalysis investigations, along with step-by-step characterization by XRD, XPS, SEM and STEM. In particular, the influence of the MXene preparation method (HF vs. LiF-HCl etchants) on surface structure/composition and metal dispersion/oxidation state is disclosed. Second, the catalytic hydrogenation performances of these materials are reported, and reveal the interest of low-loaded Pt/MXene single-atom catalysts in terms of activity, selectivity and resistance to sintering. They present an unusually high selectivity to 2-butene – without butane formation – in butadiene hydrogenation, a model reaction of applied interest for the petrochemical industry. Moreover, in CO2 reduction to CO (reverse water-gas shift reaction, relevant to greenhouse-gas valorization), these catalysts exhibit up to 99 % selectivity and a superior Pt-molar activity with respect to oxide-supported references. This work may stimulate the elaboration and investigation of other MXene-based systems for thermal heterogeneous catalysis, which remains rarely addressed on these materials.

Keywords