Energies (Dec 2020)
Fluid Mixing Nonequilibrium Processes in Industrial Piping Flows
Abstract
The flow of a multicomponent fluid through a pipeline system of arbitrary configuration is considered. The problem consists in determining the component composition of the fluid for each pipeline of the system based on the values of the concentration of the components throughout the entire set of measuring points, provided that there are no phase transitions. To solve the problem, mathematical models have been developed that, in principle, are suitable for pipeline systems of various functional purposes, the presentation is concretized and carried out in relation to gas transmission systems. The models are stochastic in nature due to measurement errors, which are considered random variables. The solution of the problem is reduced to the optimization of a quadratic function with constraints in the form of equalities and inequalities. The considered mixing processes do not depend on the regime parameters of the fluid flow. The processes are irreversible and non-equilibrium. A criterion is introduced that characterizes the degree of closeness of a multicomponent mixture to an equilibrium state. The criterion is analogous to entropy in thermodynamic processes. A numerical example of calculating the distribution of a three-component mixture is given. The example illustrates the feasibility of the proposed computational procedures and gives an idea of the distribution of the component composition and the change in «entropy» along the directions of pumping of the gas supply system.
Keywords