Risk Score for Predicting In-Hospital Mortality in COVID-19 (RIM Score)
Alejandro López-Escobar,
Rodrigo Madurga,
José María Castellano,
Sara Velázquez,
Rafael Suárez del Villar,
Justo Menéndez,
Alejandro Peixoto,
Sara Jimeno,
Paula Sol Ventura,
Santiago Ruiz de Aguiar
Affiliations
Alejandro López-Escobar
Pediatrics Department, HM Hospitales, Fundación de Investigación HM Hospitales, Facultad de Medicina, Universidad CEU San Pablo, 28015 Madrid, Spain
Rodrigo Madurga
Fundación de Investigación HM Hospitales, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28015 Madrid, Spain
José María Castellano
Cardiology Department, Hospital Universitario HM Montepríncipe, Grupo HM Hospitales, Fundación de Investigación HM Hospitales, Facultad de Medicina, Universidad CEU San Pablo, Centro Nacional de Investigaciones Cardiovasculares, Instituto de Salud Carlos III, 28015 Madrid, Spain
Sara Velázquez
Anaesthesiology Department, Hospital Universitario HM Sanchinarro, Hospital Universitario Santa Cristina, Fundación de Investigación HM Hospitales, 28015 Madrid, Spain
Rafael Suárez del Villar
Internal Medicine Department, Hospital Universitario HM Sanchinarro, Fundación de Investigación HM Hospitales, 28015 Madrid, Spain
Justo Menéndez
Emergency Department, Grupo HM Hospitales, Fundación de Investigación HM Hospitales, Facultad de Medicina, Universidad CEU San Pablo, 28015 Madrid, Spain
Alejandro Peixoto
Facultad de Medicina, Universidad CEU San Pablo, 28015 Madrid, Spain
Sara Jimeno
Pediatrics Department, Hospital Universitario HM Puerta del Sur, Móstoles, Fundación de Investigación HM Hospitales, Facultad de Medicina, Universidad CEU San Pablo, 28015 Madrid, Spain
Paula Sol Ventura
Pediatrics Department Hospital Universitario HM Nens, Fundación de Investigación HM Hospitales, 08009 Barcelona, Spain
Santiago Ruiz de Aguiar
Medical Management, Hospital Universitario HM Puerta del Sur, Móstoles, Fundación de Investigación HM Hospitales, 28015 Madrid, Spain
Infection by SARS-CoV2 has devastating consequences on health care systems. It is a global health priority to identify patients at risk of fatal outcomes. 1955 patients admitted to HM-Hospitales from 1 March to 10 June 2020 due to COVID-19, were were divided into two groups, 1310 belonged to the training cohort and 645 to validation cohort. Four different models were generated to predict in-hospital mortality. Following variables were included: age, sex, oxygen saturation, level of C-reactive-protein, neutrophil-to-platelet-ratio (NPR), neutrophil-to-lymphocyte-ratio (NLR) and the rate of changes of both hemogram ratios (VNLR and VNPR) during the first week after admission. The accuracy of the models in predicting in-hospital mortality were evaluated using the area under the receiver-operator-characteristic curve (AUC). AUC for models including NLR and NPR performed similarly in both cohorts: NLR 0.873 (95% CI: 0.849–0.898), NPR 0.875 (95% CI: 0.851–0.899) in training cohort and NLR 0.856 (95% CI: 0.818–0.895), NPR 0.863 (95% CI: 0.826–0.901) in validation cohort. AUC was 0.885 (95% CI: 0.885–0.919) for VNLR and 0.891 (95% CI: 0.861–0.922) for VNPR in the validation cohort. According to our results, models are useful in predicting in-hospital mortality risk due to COVID-19. The RIM Score proposed is a simple, widely available tool that can help identify patients at risk of fatal outcomes.