Earthquake Science (Jun 2023)

A review of the influencing factors on teleseismic traveltime tomography[Key points]

  • Yang Pan,
  • Shaolin Liu,
  • Dinghui Yang,
  • Wenshuai Wang,
  • Xiwei Xu,
  • Wenhao Shen,
  • Mengyang Li

Journal volume & issue
Vol. 36, no. 3
pp. 228 – 253

Abstract

Read online

Teleseismic traveltime tomography is an important tool for investigating the crust and mantle structure of the Earth. The imaging quality of teleseismic traveltime tomography is affected by many factors, such as mantle heterogeneities, source uncertainties and random noise. Many previous studies have investigated these factors separately. An integral study of these factors is absent. To provide some guidelines for teleseismic traveltime tomography, we discussed four main influencing factors: the method for measuring relative traveltime differences, the presence of mantle heterogeneities outside the imaging domain, station spacing and uncertainties in teleseismic event hypocenters. Four conclusions can be drawn based on our analysis. (1) Comparing two methods, i.e., measuring the traveltime difference between two adjacent stations (M1) and subtracting the average traveltime of all stations from the traveltime of one station (M2), reveals that both M1 and M2 can well image the main structures; while M1 is able to achieve a slightly higher resolution than M2; M2 has the advantage of imaging long wavelength structures. In practical teleseismic traveltime tomography, better tomography results can be achieved by a two-step inversion method. (2) Global mantle heterogeneities can cause large traveltime residuals (up to about 0.55 s), which leads to evident imaging artifacts. (3) The tomographic accuracy and resolution of M1 decrease with increasing station spacing when measuring the relative traveltime difference between two adjacent stations. (4) The traveltime anomalies caused by the source uncertainties are generally less than 0.2 s, and the impact of source uncertainties is negligible.

Keywords