Applied Sciences (Nov 2021)

Shape Optimization of Discontinuous Armature Arrangement PMLSM for Reduction of Thrust Ripple

  • Jun-Hwan Kwon,
  • Jae-Kyung Kim,
  • Euy-Sik Jeon

DOI
https://doi.org/10.3390/app112211066
Journal volume & issue
Vol. 11, no. 22
p. 11066

Abstract

Read online

The aim of this paper is to present the optimal design process and an optimized model for a discontinuous armature arrangement permanent magnet linear synchronous motor (PMLSM). The stator tooth shapes are optimized to reduce detent force. When the shape of the stator is changed to reduce the detent force, the saturation magnetic flux density and the back electromotive force characteristics change. Multi-objective optimization is used to search for the local lowest point that can improve the detent force, saturation magnetic flux density, and back EMF characteristics. To reduce the detent force generated at the outlet edge, a trapezoidal auxiliary tooth was installed and the performance was analyzed. The experiment’s response surface methodology is used as an optimization method and all the experimental samples are obtained from finite-element analysis. The validity of this method is verified by comparing the optimized FEA model to the initial FEA model.

Keywords