Journal of Intelligent Systems (May 2018)

i-Vector-Based Speaker Verification on Limited Data Using Fusion Techniques

  • Jayanthi Kumari T.R.,
  • Jayanna H.S.

DOI
https://doi.org/10.1515/jisys-2017-0047
Journal volume & issue
Vol. 29, no. 1
pp. 565 – 582

Abstract

Read online

In many biometric applications, limited data speaker verification plays a significant role in practical-oriented systems to verify the speaker. The performance of the speaker verification system needs to be improved by applying suitable techniques to limited data condition. The limited data represent both train and test data duration in terms of few seconds. This article shows the importance of the speaker verification system under limited data condition using feature- and score-level fusion techniques. The baseline speaker verification system uses vocal tract features like mel-frequency cepstral coefficients, linear predictive cepstral coefficients and excitation source features like linear prediction residual and linear prediction residual phase as features along with i-vector modeling techniques using the NIST 2003 data set. In feature-level fusion, the vocal tract features are fused with excitation source features. As a result, on average, equal error rate (EER) is approximately equal to 4% compared to individual feature performance. Further in this work, two different types of score-level fusion are demonstrated. In the first case, fusing the scores of vocal tract features and excitation source features at score-level-maintaining modeling technique remains the same, which provides an average reduction approximately equal to 2% EER compared to feature-level fusion performance. In the second case, scores of the different modeling techniques are combined, which has resulted in EER reduction approximately equal to 4.5% compared with score-level fusion of different features.

Keywords