Applied Water Science (May 2018)
GIS-based model of groundwater occurrence using geological and hydrogeological data in Precambrian Oban Massif southeastern Nigeria
Abstract
Abstract This research modeled geological and hydrogeological controls on groundwater occurrence in Oban Massif and environs southeastern Nigeria. Topographical, hydrogeological, and structural maps, including lithology samples from drilled bores, well completion, and pumping test data in the study area were procured. Collection of coordinates of rock sample locations and structural data on strike and dip of rock exposures was collected. Geological and structural information collected was overlaid on the topographical, hydrogeological and structural map and digitized to produce the geological map of the study area. Thematic map on geological groundwater prospect map of the study was prepared using multicriteria evaluation. Relative weights were assigned to various rock types based on their relative contribution to groundwater occurrence and the map was reclassified using geographic information system (ArcGIS10.1) analysis. Depth ranges of the various lithologic units from drilled boreholes were used to construct lithologic correlation section of the boreholes across the study area using RockWorks16 Program software. Hydrogeological parameters such as storativity, specific capacity, transmissivity, drawdown, pumping rate, static water level, total depth, and well yield were computed from well completion reports and aquifer test. Results shows that the geologic groundwater prospect map was categorized into very good (28.73 m2), good (9.66 m2), moderate (35.08 m2), fair (49.38 m2), and poor (77.63 m2) zones. Aquifer parameters showed ranges such as (specific capacity (1.81–31.16 m2/day/m), transmissivity (0.0033–12 m2/day), storativity (9.4 × 10−3–2.3), drawdown (2.2–17.65 m), pumping rate (0.75–3.57 l/s), static water level (0–20.5 m), and total depth (3.3–61 m). Borehole depths obtained in the basement are shallower than those in the sedimentary area. Aquifer test parameters obtained from boreholes across the study indicate better correspondence with zones identified as good water prospect in the study. It was evident that well yield is not a very reliable aquifer performance indicator, because it depends largely on the efficiency of the pump installed. Therefore, other aquifer parameters must be employed in aquifer performance assessment. The geologic formation is paramount in determining aquifer performance. The result of this groundwater occurrence is useful as a guide for groundwater developers, which engineers in water resource management and land-use planners to select suitable areas to implement development schemes and also government agencies.
Keywords