NeuroImage (Nov 2023)

The iron burden of cerebral microbleeds contributes to brain atrophy through the mediating effect of white matter hyperintensity

  • Ke Lv,
  • Yanzhen Liu,
  • Yongsheng Chen,
  • Sagar Buch,
  • Ying Wang,
  • Zhuo Yu,
  • Huiying Wang,
  • Chenxi Zhao,
  • Dingwei Fu,
  • Huapeng Wang,
  • Beini Wang,
  • Shengtong Zhang,
  • Yu Luo,
  • E. Mark Haacke,
  • Wen Shen,
  • Chao Chai,
  • Shuang Xia

Journal volume & issue
Vol. 281
p. 120370

Abstract

Read online

The goal of this work was to explore the total iron burden of cerebral microbleeds (CMBs) using a semi-automatic quantitative susceptibility mapping and to establish its effect on brain atrophy through the mediating effect of white matter hyperintensities (WMH). A total of 95 community-dwelling people were enrolled. Quantitative susceptibility mapping (QSM) combined with a dynamic programming algorithm (DPA) was used to measure the characteristics of 1309 CMBs. WMH were evaluated according to the Fazekas scale, and brain atrophy was assessed using a 2D linear measurement method. Histogram analysis was used to explore the distribution of CMBs susceptibility, volume, and total iron burden, while a correlation analysis was used to explore the relationship between volume and susceptibility. Stepwise regression analysis was used to analyze the risk factors for CMBs and their contribution to brain atrophy. Mediation analysis was used to explore the interrelationship between CMBs and brain atrophy. We found that the frequency distribution of susceptibility of the CMBs was Gaussian in nature with a mean of 201 ppb and a standard deviation of 84 ppb; however, the volume and total iron burden of CMBs were more Rician in nature. A weak but significant correlation between the susceptibility and volume of CMBs was found (r = -0.113, P < 0.001). The periventricular WMH (PVWMH) was a risk factor for the presence of CMBs (number: β = 0.251, P = 0.014; volume: β = 0.237, P = 0.042; total iron burden: β = 0.238, P = 0.020) and was a risk factor for brain atrophy (third ventricle width: β = 0.325, P = 0.001; Evans's index: β = 0.323, P = 0.001). PVWMH had a significant mediating effect on the correlation between CMBs and brain atrophy. In conclusion, QSM along with the DPA can measure the total iron burden of CMBs. PVWMH might be a risk factor for CMBs and may mediate the effect of CMBs on brain atrophy.

Keywords