Perturbations in 3D genome organization can promote acquired drug resistance
Anna G. Manjón,
Stefano Giustino Manzo,
Stefan Prekovic,
Leon Potgeter,
Tom van Schaik,
Ning Qing Liu,
Koen Flach,
Daniel Peric-Hupkes,
Stacey Joosten,
Hans Teunissen,
Anoek Friskes,
Mila Ilic,
Dorine Hintzen,
Vinícius H. Franceschini-Santos,
Wilbert Zwart,
Elzo de Wit,
Bas van Steensel,
René H. Medema
Affiliations
Anna G. Manjón
Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
Stefano Giustino Manzo
Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
Stefan Prekovic
Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, 3584 CX Utrecht, the Netherlands
Leon Potgeter
Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
Tom van Schaik
Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
Ning Qing Liu
Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Department of Hematology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, the Netherlands
Koen Flach
Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
Daniel Peric-Hupkes
Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
Stacey Joosten
Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
Hans Teunissen
Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
Anoek Friskes
Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
Mila Ilic
Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
Dorine Hintzen
Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
Vinícius H. Franceschini-Santos
Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
Wilbert Zwart
Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
Elzo de Wit
Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
Bas van Steensel
Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Corresponding author
René H. Medema
Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Corresponding author
Summary: Acquired drug resistance is a major problem in the treatment of cancer. hTERT-immortalized, untransformed RPE-1 cells can acquire resistance to Taxol by derepressing the ABCB1 gene, encoding for the multidrug transporter P-gP. Here, we investigate how the ABCB1 gene is derepressed. ABCB1 activation is associated with reduced H3K9 trimethylation, increased H3K27 acetylation, and ABCB1 displacement from the nuclear lamina. While altering DNA methylation and H3K27 methylation had no major impact on ABCB1 expression, nor did it promote resistance, disrupting the nuclear lamina component Lamin B Receptor did promote the acquisition of a Taxol-resistant phenotype in a subset of cells. CRISPRa-mediated gene activation supported the notion that lamina dissociation influences ABCB1 derepression. We propose a model in which nuclear lamina dissociation of a repressed gene allows for its activation, implying that deregulation of the 3D genome topology could play an important role in tumor evolution and the acquisition of drug resistance.