Applied Sciences (Jul 2022)

Hydrophobic Antiwetting of Aquatic UAVs: Static and Dynamic Experiment and Simulation

  • Yihua Zheng,
  • Zhimin Huang,
  • Chengchun Zhang,
  • Zhengyang Wu

DOI
https://doi.org/10.3390/app12157626
Journal volume & issue
Vol. 12, no. 15
p. 7626

Abstract

Read online

The adhesion of water to the surfaces of unmanned aerial vehicles (UAVs) adversely affects the function. The proposed UAVs will have underwater as well as flight capability, and these aquatic UAVs must shed water to resume flight. The efficient separation of the adhering water from aquatic-UAV surfaces is a challenging problem; we investigated the application of hydrophobic surfaces as a potential solution. Using aquatic-UAV models, one with hydrophilic surfaces and the other with superhydrophobic anisotropic textured surfaces, the antiwetting mechanism of the hydrophobic surfaces was investigated using a simulated-precipitation system and instrumentation to measure the load of the water adhering to the aquatic UAV, and to measure the impact energies. When the model was stationary (passive antiwetting), no adhesion occurred on the superhydrophobic surfaces, while continuous asymmetric thick liquid films were observed on the hydrophilic surfaces. The superhydrophobic surfaces reduced the rain loading by 87.5%. The vibration and movement of the model (dynamic antiwetting, simulating flight motions) accelerated the separation process and reduced the contact time. The observed results were augmented by the use of computational fluid dynamics with lattice Boltzmann methods (LBM) to analyze the particle traces inside the droplets, the liquid phase velocity-field and pressure-field strengths, and the backward bouncing behavior of the derived droplet group induced by the moving surface. The synergy between the superhydrophobic surfaces and the kinetic energy of the droplets promotes the breakup of drops, which avoids the significant lateral unbalance observed with hydrophilic surfaces during simulated flight.

Keywords