ZnO Polymeric Composite Films for <i>n</i>-Decane Removal from Air Streams in a Continuous Flow NETmix Photoreactor under UVA Light
Crissie D. Zanrosso,
Sandra M. Miranda,
Batuira M. da Costa Filho,
Jonathan C. Espíndola,
Diego Piazza,
Vítor J. P. Vilar,
Marla A. Lansarin
Affiliations
Crissie D. Zanrosso
Chemical Engineering Department, Federal University of Rio Grande do Sul, R. Ramiro Barcelos 2777, Porto Alegre 90035-007, Brazil
Sandra M. Miranda
Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Batuira M. da Costa Filho
Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Jonathan C. Espíndola
Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Diego Piazza
Laboratory of Polymers, Center for Exact Sciences and Technology, University of Caxias do Sul, R. Francisco Getúlio Vargas 1130, Caxias do Sul 95070-560, Brazil
Vítor J. P. Vilar
Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Marla A. Lansarin
Chemical Engineering Department, Federal University of Rio Grande do Sul, R. Ramiro Barcelos 2777, Porto Alegre 90035-007, Brazil
Polymeric composite films have been explored for many photocatalytic applications, from water treatment to self-cleaning devices. Their properties, namely, thickness and porosity, are controlled mainly by the preparation conditions. However, little has been discussed on the effect of thickness and porosity of polymeric composite films for photocatalytic processes, especially in gas phase. In the present study, different preparation treatments of ZnO-based polymeric composite films and their effects on its performance and stability were investigated. The polymeric composites were prepared by solution mixing followed by non-solvent induced phase separation (NIPS), using poly(vinylidene fluoride) (PVDF) as the matrix and ZnO-based photocatalysts. Different wet thickness, photocatalyst mass, and treatments (e.g., using or not pore-forming agent and compatibilizer) were assessed. A low ZnO/PVDF ratio and higher wet thickness, together with the use of pore-forming agent and compatibilizer, proved to be a good strategy for increasing photocatalytic efficiency given the low agglomerate formation and high polymer transmittance. Nonetheless, the composites exhibited deactivation after several minutes of exposure. Characterization by XRD, FTIR-ATR, and SEM were carried out to further investigate the polymeric film treatments and stability. ZnO film was most likely deactivated due to zinc carbonate formation intensified by the polymer presence.