Diagnostics (Mar 2022)

A Predictive Model for the Risk of Posterior Circulation Stroke in Patients with Intracranial Atherosclerosis Based on High Resolution MRI

  • Zhenxing Liu,
  • Feiyang Zhong,
  • Yu Xie,
  • Xuanzhen Lu,
  • Botong Hou,
  • Keni Ouyang,
  • Jiabin Fang,
  • Meiyan Liao,
  • Yumin Liu

DOI
https://doi.org/10.3390/diagnostics12040812
Journal volume & issue
Vol. 12, no. 4
p. 812

Abstract

Read online

Intracranial vertebrobasilar atherosclerosis is the main cause of posterior circulation ischemic stroke. We aimed to construct a predictive model for the risk of posterior circulation ischemic stroke in patients with posterior circulation atherosclerosis based on high-resolution MRI (HR-MRI). A total of 208 consecutive patients with posterior circulation atherosclerosis confirmed by HR-MRI, from January 2020 to July 2021, were retrospectively assessed. They were assigned to the posterior circulation stroke (59 patients) and non-posterior circulation stroke group (149 patients) based on clinical presentation and diffusion-weighted imaging (DWI). Demographic data, risk factors of atherosclerosis, laboratory findings, and imaging characteristics were extracted from electronic health records. Plaque features were investigated by HR-MRI. Fifty-three clinical or imaging features were used to derive the model. Multivariable logistic regression analysis was employed to construct the prediction model. The nomogram was evaluated for calibration, differentiation, and clinical usefulness. Plaque enhancement, plaque irregular surface morphology, artery location of plaque, and dorsal quadrant of plaque location were significant predictors for posterior circulation stroke in patients with intracranial atherosclerosis. Subsequently, these variables were selected to establish a nomogram. The model showed good distinction (C-index 0.830, 95% CI 0.766-0.895). The calibration curve also showed excellent consistency between the prediction of the nomogram and the observed curve. Decision curve analysis further demonstrated that the nomogram conferred significantly high clinical net benefit. The nomogram calculated from plaque characteristics in HR-MRI may accurately predict the posterior circulation stroke occurrence and be of great help for stratification of stroke decision making.

Keywords