New Bioactive β-Resorcylic Acid Derivatives from the Alga-Derived Fungus <i>Penicillium antarcticum</i> KMM 4685
Elena V. Leshchenko,
Alexandr S. Antonov,
Gleb V. Borkunov,
Jessica Hauschild,
Olesya I. Zhuravleva,
Yuliya V. Khudyakova,
Alexander S. Menshov,
Roman S. Popov,
Natalya Yu Kim,
Markus Graefen,
Carsten Bokemeyer,
Gunhild von Amsberg,
Anton N. Yurchenko,
Sergey A. Dyshlovoy
Affiliations
Elena V. Leshchenko
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
Alexandr S. Antonov
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
Gleb V. Borkunov
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
Jessica Hauschild
Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
Olesya I. Zhuravleva
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
Yuliya V. Khudyakova
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
Alexander S. Menshov
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
Roman S. Popov
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
Natalya Yu Kim
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
Markus Graefen
Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
Carsten Bokemeyer
Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
Gunhild von Amsberg
Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
Anton N. Yurchenko
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
Sergey A. Dyshlovoy
Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
Five new β-resorcylic acid derivatives, 14-hydroxyasperentin B (1), β-resoantarctines A-C (3, 5, 6) and 8-dehydro-β-resoantarctine A (4), together with known 14-hydroxyasperentin (5′-hydroxyasperentin) (2), were isolated from the ethyl acetate extract of the fungus Penicillium antarcticum KMM 4685 associated with the brown alga Sargassum miyabei. The structures of the compounds were elucidated by spectroscopic analyses and modified Mosher’s method, and the biogenetic pathways for compounds 3–6 were proposed. For the very first time, the relative configuration of the C-14 center of a known compound 2 was assigned via analyses of magnitudes of the vicinal coupling constants. The new metabolites 3–6 were biogenically related to resorcylic acid lactones (RALs); however, they did not possess lactonized macrolide elements in their structures. Compounds 3, 4 and 5 exhibited moderate cytotoxic activity in LNCaP, DU145 and 22Rv1 human prostate cancer cells. Moreover, these metabolites could inhibit the activity of p-glycoprotein at their noncytotoxic concentrations and consequently synergize with docetaxel in p-glycoprotein-overexpressing drug-resistant cancer cells.