Авіаційно-космічна техніка та технологія (Aug 2020)
INCREASING ACCURACY OF CALCULATION OF THE PATTERN OF GAS TEMPERATURES AT THE EXIT FROM THE COMBUSTION CHAMBER OF A GTE BY THE THREE-DIMENSIONAL METHOD COMPUTER MODELING
Abstract
The problem of numerical simulation of the gas flow with the combustion of atomized liquid fuel was solved (the equilibrium combustion model pdf was used along with the partially mixed mixture model) in the annular combustion chamber of a gas turbine engine. Numerical modeling was performed in Ansys Fluent calculation complex. The purpose of the calculations was to simulate the radial and circumferential unevenness of the gas temperature pattern at the outlet of the combustion chamber. As a result of the calculations, it was found that the accuracy of modeling the radial and circumferential unevenness of the gas temperature pattern at the outlet of the combustion chamber is unsatisfactory when using the k–e turbulence model with the initial settings for the Ansys Fluent calculation complex. Moreover, the maximum value of the radial non-uniformity of the gas temperature pattern at the outlet of the combustion chamber exceeded the value obtained in the experiment by 12.61 %, and the maximum value of the circumferential non-uniformity by 12.69 %. To improve the accuracy of modeling the temperature pattern non-uniformity at the outlet of the combustion chamber, a numerical experiment was conducted to study the effect of the degree of turbulent diffusion of gas components on the value of temperature pattern non-uniformity. To reduce the non-uniformity of the temperature pattern at the outlet of the combustion chamber, the degree of turbulent diffusion of gas components was increased with respect to the initial version of the calculation, performed using the k–e model of turbulence with the initial settings for the Ansys Fluent calculation complex, by reducing the turbulent Schmidt number Sc in the turbulence model. For the initial settings of the k–e turbulence model in the Ansys Fluent calculation complex, the turbulent Schmidt number Sc = 0.85. A numerical experiment was performed for the values of Sc = 0.6, Sc = 0.4, and Sc = 0.2. The results of a numerical experiment confirmed the influence of the turbulent Schmidt number Sc on the result of calculating the gas temperature pattern at the outlet of the combustion chamber; as the value of Sc decreases, the level of the circumferential and radial non-uniformities of the gas temperature pattern decreases. However, the degree of reduction of radial and circumferential irregularities with a decrease in Sc is different. Therefore, to ensure high accuracy in calculating both the circumferential and radial non-uniformities of the gas temperature pattern, it was proposed to use a variable value of the turbulent Schmidt number Sc depending on the gas temperature instead of a constant value. The functional dependence of the turbulent Schmidt number Sc on the gas temperature was implemented in the Ansys Fluent calculation complex using the user function (UDF). The results of modeling the gas temperature pattern using the proposed UDF function for the turbulent Schmidt number Sc are in satisfactory agreement with the experimental data for both radial and circumferential non-uniformities of the gas temperature pattern at the outlet of the combustion chamber.
Keywords