Antioxidants (May 2024)
Omega-3-Rich Tuna Oil Derived from By-Products of the Canned Tuna Industry Enhances Memory in an Ovariectomized Rat Model of Menopause
Abstract
To increase the value of the by-products of the canned tuna industry, the memory enhancement effect and the possible mechanisms of omega-3-rich tuna oil in bilateral ovariectomized (OVX) rats were assessed. Female rats were orally given tuna oil at doses of 140, 200, and 250 mg/kg of body weight (BW) for 28 days before OVX and for 21 days continually after OVX. Memory performance was assessed every week, whereas the parameters regarding mechanisms of action were assessed at the end of the study. All doses of tuna oil enhanced memory, docosahexaenoic acid (DHA) levels, and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities but decreased cortisol, acetylcholinesterase (AChE), malondialdehyde (MDA), and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Medium and high doses of tuna oil suppressed monoamine oxidase (MAO) but increased eNOS activity. A high dose of tuna oil suppressed gamma-aminotransferase (GABA-T) but increased glutamic acid decarboxylase (GAD) and sirtuin-1. A medium dose of tuna oil decreased homocysteine (Hcys) and C-reactive protein. No change in telomere or estradiol was observed in this study. Our results suggest the memory-enhancing effect of tuna oil in an OVX rat model of menopause. The main mechanisms may involve a reduction in oxidative stress, inflammation, and neurotransmitter regulation.
Keywords