PLoS ONE (Jan 2018)

Doxorubicin-provoked increase of mitotic activity and concomitant drain of G0-pool in therapy-resistant BE(2)-C neuroblastoma.

  • Isabell Hultman,
  • Linnea Haeggblom,
  • Ingvild Rognmo,
  • Josefin Jansson Edqvist,
  • Evelina Blomberg,
  • Rouknuddin Ali,
  • Lottie Phillips,
  • Bengt Sandstedt,
  • Per Kogner,
  • Shahrzad Shirazi Fard,
  • Lars Ährlund-Richter

DOI
https://doi.org/10.1371/journal.pone.0190970
Journal volume & issue
Vol. 13, no. 1
p. e0190970

Abstract

Read online

In this study chemotherapy response in neuroblastoma (NB) was assessed for the first time in a transplantation model comprising non-malignant human embryonic microenvironment of pluripotent stem cell teratoma (PSCT) derived from diploid bona fide hESC. Two NB cell lines with known high-risk phenotypes; the multi-resistant BE(2)-C and the drug sensitive IMR-32, were transplanted to the PSCT model and the tumour growth was exposed to single or repeated treatments with doxorubicin, and thereafter evaluated for cell death, apoptosis, and proliferation. Dose dependent cytotoxic effects were observed, this way corroborating the experimental platform for this type of analysis. Notably, analysis of doxorubicin-resilient BE(2)-C growth in the PSCT model revealed an unexpected 1,5-fold increase in Ki67-index (p3-fold increase in active cell cycle (i.e. cells positive staining for PH3 together with incorporation of EdU) (p<0.01). Considering the clinical challenge for treating high-risk NB, the discovery of a therapy-provoked growth-stimulating effect in the multi-resistant and p53-mutated BE(2)-C cell line, but not in the drug-sensitive p53wt IMR-32 cell line, warrants further studies concerning generality and clinical significance of this new observation.