BMC Geriatrics (Sep 2021)

Prevalence and physical characteristics of locomotive syndrome stages as classified by the new criteria 2020 in older Japanese people: results from the Nagahama study

  • Masashi Taniguchi,
  • Tome Ikezoe,
  • Tadao Tsuboyama,
  • Yasuharu Tabara,
  • Fumihiko Matsuda,
  • Noriaki Ichihashi,
  • on behalf of the Nagahama Study group

DOI
https://doi.org/10.1186/s12877-021-02440-2
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background The Japanese Orthopaedic Association (JOA) proposed the concept of locomotive syndrome (LS) in 2007 for detecting high-risk individuals with mobility limitation. In 2020, the JOA revised the clinical decision limits and introduced LS stage 3, which carried the highest-risk for LS compared to the conventional stages, 1 and 2. The purpose of this study was to characterize the prevalence, comorbidities, and physical characteristics in each LS stage, as per the LS criteria 2020. Methods We analyzed 2077 participants (64.9% women; mean age, 68.3 ± 5.4 years) from the Nagahama Study aged ≥60 years. Participants were classified into 4 groups, non-LS and LS stages 1, 2, and 3, based on a 25-question Geriatric Locomotive Function Scale. The prevalence of comorbidities (sarcopenia, osteoporosis, diabetes mellitus, low back pain [LBP], and knee pain) were investigated. Physical characteristics were measured based on the physical performance tests including gait speed, five-times chair-stand, single-leg stand, and short physical performance battery; muscle strength tests including grip, knee extension, hip flexion, and abduction; and body-composition analysis including muscle quantity and quality. Differences in the prevalence of comorbidities between LS stages were tested using the chi-square test. The general linear model was performed for univariate and multivariate analyses with post-hoc test to compare the differences in physical characteristics among the LS stages. Results The prevalence of LS increased with age, and the mean prevalence of LS stages 1, 2, and 3 were 24.4, 5.5, and 6.5%, respectively. The prevalence of comorbidities, including sarcopenia, osteoporosis, LBP, and knee pain, increased with worsening LS stage. Physical performance tests were significantly different between LS stages 2 and 3; and muscle strength differed significantly between LS stages 1 and 2. Additionally, in terms of body composition analysis, muscle quality but not muscle quantity showed significant differences among all the LS stages. Conclusions Our findings suggest that muscle strengthening and dynamic training, including balance training in LS stage 1 and 2, respectively, were needed for preventing the LS progression. Individuals with LS stage 3 should perform dynamic training and muscle strengthening exercises while receiving treatment for comorbidities.

Keywords