BMC Research Notes (Oct 2011)

Sequencing of BAC pools by different next generation sequencing platforms and strategies

  • Scholz Uwe,
  • Petzold Andreas,
  • Felder Marius,
  • Groth Marco,
  • Schmutzer Thomas,
  • Schulte Daniela,
  • Ariyadasa Ruvini,
  • Steuernagel Burkhard,
  • Taudien Stefan,
  • Mayer Klaus FX,
  • Stein Nils,
  • Platzer Matthias

DOI
https://doi.org/10.1186/1756-0500-4-411
Journal volume & issue
Vol. 4, no. 1
p. 411

Abstract

Read online

Abstract Background Next generation sequencing of BACs is a viable option for deciphering the sequence of even large and highly repetitive genomes. In order to optimize this strategy, we examined the influence of read length on the quality of Roche/454 sequence assemblies, to what extent Illumina/Solexa mate pairs (MPs) improve the assemblies by scaffolding and whether barcoding of BACs is dispensable. Results Sequencing four BACs with both FLX and Titanium technologies revealed similar sequencing accuracy, but showed that the longer Titanium reads produce considerably less misassemblies and gaps. The 454 assemblies of 96 barcoded BACs were improved by scaffolding 79% of the total contig length with MPs from a non-barcoded library. Assembly of the unmasked 454 sequences without separation by barcodes revealed chimeric contig formation to be a major problem, encompassing 47% of the total contig length. Masking the sequences reduced this fraction to 24%. Conclusion Optimal BAC pool sequencing should be based on the longest available reads, with barcoding essential for a comprehensive assessment of both repetitive and non-repetitive sequence information. When interest is restricted to non-repetitive regions and repeats are masked prior to assembly, barcoding is non-essential. In any case, the assemblies can be improved considerably by scaffolding with non-barcoded BAC pool MPs.

Keywords