Journal of Intelligent Systems (Jun 2021)
Adaptive intelligent learning approach based on visual anti-spam email model for multi-natural language
Abstract
Spam electronic mails (emails) refer to harmful and unwanted commercial emails sent to corporate bodies or individuals to cause harm. Even though such mails are often used for advertising services and products, they sometimes contain links to malware or phishing hosting websites through which private information can be stolen. This study shows how the adaptive intelligent learning approach, based on the visual anti-spam model for multi-natural language, can be used to detect abnormal situations effectively. The application of this approach is for spam filtering. With adaptive intelligent learning, high performance is achieved alongside a low false detection rate. There are three main phases through which the approach functions intelligently to ascertain if an email is legitimate based on the knowledge that has been gathered previously during the course of training. The proposed approach includes two models to identify the phishing emails. The first model has proposed to identify the type of the language. New trainable model based on Naive Bayes classifier has also been proposed. The proposed model is trained on three types of languages (Arabic, English and Chinese) and the trained model has used to identify the language type and use the label for the next model. The second model has been built by using two classes (phishing and normal email for each language) as a training data. The second trained model (Naive Bayes classifier) has been applied to identify the phishing emails as a final decision for the proposed approach. The proposed strategy is implemented using the Java environments and JADE agent platform. The testing of the performance of the AIA learning model involved the use of a dataset that is made up of 2,000 emails, and the results proved the efficiency of the model in accurately detecting and filtering a wide range of spam emails. The results of our study suggest that the Naive Bayes classifier performed ideally when tested on a database that has the biggest estimate (having a general accuracy of 98.4%, false positive rate of 0.08%, and false negative rate of 2.90%). This indicates that our Naive Bayes classifier algorithm will work viably on the off chance, connected to a real-world database, which is more common but not the largest.
Keywords