Applied Sciences (Oct 2024)

Inverse-Nanoemulsion-Derived Protein Hydrogels (NanoTrans-Gels) Can Outperform DOSPA/DOPE Lipid-Complex Transfection Agent

  • Michael Kohler,
  • Markus Krämer,
  • Bastian Draphoen,
  • Felicitas Schmitt,
  • Mika Lindén,
  • Ann-Kathrin Kissmann,
  • Ulrich Ziener,
  • Frank Rosenau

DOI
https://doi.org/10.3390/app14209151
Journal volume & issue
Vol. 14, no. 20
p. 9151

Abstract

Read online

Transfection of mammalian and human cell lines in medical research both are key technologies in molecular biology and genetic engineering. A vast variety of techniques to facilitate transfection exists including different chemical and nanoparticle-based agents as mediators of nucleic acid uptake, with nanoparticles composed of the lipids DOSPA/DOPE belonging to the established type of agents. We show that inverse-nanoemulsion-derived protein nanohydrogels (NanoTrans-gels), prepared by a simple synthesis protocol, are suited to transfect two model cancer cell lines (MCF7 and A549) with high efficiency. The transfection efficiency was analyzed in comparison to the DOSPA/DOPE-dependent protocols as a reference method. Since nanogel-based transfection outperformed the Lipofectamine-dependent technique in our experiments, we believe that the NanoTrans-gels loaded with plasmid DNA may open new avenues for simple and efficient transfection for humans and probably also other mammalian cell lines and may develop into a general tool for standard transfection procedures in cell biology laboratories.

Keywords