Diversity (Jul 2024)
Oxygen Concentration and Its Implications for Microbial Structure and Metabolism: A Case Study in a Deep Tropical Reservoir
Abstract
The vertical stratification of oxygen concentration in deep reservoirs impacts nutrient cycling and ecosystem biodiversity. The Serra da Mesa reservoir, the largest in Brazil, was studied to evaluate the structure and production of the prokaryote community at five depths. Using 3H leucine incorporation and fluorescent in situ hybridization (FISH), the study focused on different depths near the dam, particularly within the euphotic zone. The water column was characterized into oxic, transitional, and hypoxic layers based on dissolved oxygen concentration. The highest densities and biomasses of prokaryotes were found at the euphotic zone’s depth limit, where bacterial production was low, suggesting inactive or slow-growing bacteria. Cell size differences and filamentous bacteria presence near the surface were observed, likely due to varying predation pressures. Prokaryote community composition differed across depths. At the subsurface level, with high dissolved organic carbon, alphaproteobacteria, betaproteobacteria, and Cytophaga–Flavobacter had similar densities, but the lowest bacterial biomass was recorded. The highest dissolved oxygen concentration depth had the lowest bacterial density, dominated by alphaproteobacteria and gammaproteobacteria. The study revealed that prokaryotic community structure and production vary with depth, indicating that microbial participation in layer dynamics is differentiated, with variations in abundance and distribution linked to oxygen concentrations.
Keywords