Symmetry (Nov 2023)
Molecular Descriptors—Spectral Property Relations for Characterizing Molecular Interactions in Binary and Ternary Solutions, Excited State Dipole Moment Estimation
Abstract
The nature and strength of the molecular interactions were established by solvatochromic studies of 22 binary and 42 ternary diluted solutions of pyridinium–carbethoxy–anilidomethylid (PCAnM). The visible absorption band of PCAnM, due to an intramolecular charge transfer (ICT) from the carbanion towards the heterocycle, shows a great sensitivity to the solvent nature. The spectral data are analysed by linear energy relationship (LERS) and the contribution of each type of interaction to the total spectral shift is estimated. The results from the solvatochromic study and those obtained by quantum mechanical computations were correlated in order to estimate the excited state dipole moment of the studied methylid. The decrease of the dipole moment by excitation emphasized in this study corresponds to the ICT nature of the visible absorption band of the solute. The ternary solutions of PCAnM achieved in mixtures of water with primary alcohols (ethanol and methanol) show the dependence of the visible band on the molar fraction of water and give the difference between the interaction energies in molecular pairs of the type water–methylid and alcohol–methylid, computed based on the statistical cell model of ternary solutions. The decrease in strength of the hydrogen bond between PCAnM and the protic solvent molecules was estimated in the following order: water > methanol > ethanol. The results from this study can be utilized in Organic Chemistry to generate knowledge of the interactions with solvents when cycloimmonium methylids are used as precursors to obtain new heterocycles and also in Quantum Chemistry to obtain a better description of their excited electronic states.
Keywords