Heliyon (Sep 2024)
Influenza and the gut microbiota: A hidden therapeutic link
Abstract
Background: The extensive community of gut microbiota significantly influences various biological functions throughout the body, making its characterization a focal point in biomedicine research. Over the past few decades, studies have revealed a potential link between specific gut bacteria, their associated metabolic pathways, and influenza. Bacterial metabolites can communicate directly or indirectly with organs beyond the gut via the intestinal barrier, thereby impacting the physiological functions of the host. As the microbiota increasingly emerges as a ‘gut signature’ in influenza, gaining a deeper understanding of its role may offer new insights into its pathophysiological relevance and open avenues for novel therapeutic targets. In this Review, we explore the differences in gut microbiota between healthy individuals and those with influenza, the relationship between gut microbiota metabolites and influenza, and potential strategies for preventing and treating influenza through the regulation of gut microbiota and its metabolites, including fecal microbiota transplantation and microecological preparations. Methods: We utilized PubMed and Web of Science as our search databases, employing keywords such as “influenza,” “gut microbiota,” “traditional Chinese medicine,” “metabolites,” “prebiotics,” “probiotics,” and “machine learning” to retrieve studies examining the potential therapeutic connections between the modulation of gut microbiota and its metabolites in the treatment of influenza. The search encompassed literature from the inception of the databases up to December 2023. Results: Fecal microbiota transplantation (FMT), microbial preparations (probiotics and prebiotics), and traditional Chinese medicine have unique advantages in regulating intestinal microbiota and its metabolites to improve influenza outcomes. The primary mechanism involves increasing beneficial intestinal bacteria such as Bacteroidetes and Bifidobacterium while reducing harmful bacteria such as Proteobacteria. These interventions act directly or indirectly on metabolites such as short-chain fatty acids (SCFAs), amino acids (AAs), bile acids, and monoamines to alleviate lung inflammation, reduce viral load, and exert anti-influenza virus effects. Conclusion: The gut microbiota and its metabolites have direct or indirect therapeutic effects on influenza, presenting broad research potential for providing new directions in influenza research and offering references for clinical prevention and treatment. Future research should focus on identifying key strains, specific metabolites, and immune regulation mechanisms within the gut microbiota to accurately target microbiota interventions and prevent respiratory viral infections such as influenza.