Forests (Dec 2020)

Tree-Ring Width and Carbon Isotope Chronologies Track Temperature, Humidity, and Baseflow in the Tianshan Mountains, Central Asia

  • Yuting Fan,
  • Huaming Shang,
  • Ye Wu,
  • Qian Li

DOI
https://doi.org/10.3390/f11121308
Journal volume & issue
Vol. 11, no. 12
p. 1308

Abstract

Read online

Concerns have been raised about the negative impacts of global warming on the hydrological climate change and ecosystems of Asia. Research on the high-altitude mountainous regions of Asia with relatively short meteorological and hydrological records relies on paleoclimate proxy data with long time scales. The stable isotopes of tree-rings are insightful agents that provide information on pre-instrumental climatic and hydrological fluctuations, yet the variability of these data from different regions along the Tianshan Mountains has not been fully explored. Herein, we related climate data with tree-ring width (TRW) chronologies and δ13C (stable carbon isotope discrimination) series to discern if the Picea schrenkiana in the Ili and Manas River Basins are sensitive to climatic factors and baseflow (BF). The results show significant correlations between temperature and TRW chronologies, temperature and δ13C, relative humidity and TRW chronologies, and BF and δ13C. Temperature, particularly the mean late summer to early winter temperature, is a pronounced limiting factor for the tree-ring and the δ13C series in the Manas River Basin, located in the middle of the North Tianshan Mountains. Meanwhile, mean early spring to early autumn temperature is a limiting factor for that of the Ili River Basin, located on the southern slope of the North Tianshan Mountains. We conclude that different seasonal variations in temperature and precipitation of the two river basins exerted significant control on tree growth dynamics. Tree-ring width and tree-ring δ13C differ in their sensitivity to climate and hydrological parameters to which tree-ring δ13C is more sensitive. δ13C showed significant lag with precipitation, and the lag correlation showed that BF, temperature, and precipitation were the most affected factors that are often associated with source water environments. δ13C series correlated positively to winter precipitation, suggesting baseflow was controlling the length of the growing season. The tree-ring δ13C provided information that coincided with TRW chronologies, and supplied some indications that were different from TRW chronologies. The carbon stable isotopes of tree-rings have proven to be powerful evidence of climatic signals and source water variations.

Keywords