Scientific Reports (Jul 2024)

Climate change triggered planktonic cyanobacterial blooms in a regulated temperate river

  • Julia Kleinteich,
  • Marieke A. Frassl,
  • Manoj Schulz,
  • Helmut Fischer

DOI
https://doi.org/10.1038/s41598-024-66586-w
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Harmful algae blooms are a rare phenomenon in rivers but seem to increase with climate change and river regulation. To understand the controlling factors of cyanobacteria blooms that occurred between 2017 and 2020 over long stretches (> 250 km) of the regulated Moselle River in Western Europe, we measured physico-chemical and biological variables and compared those with a long-term dataset (1997–2016). Cyanobacteria (Microcystis) dominated the phytoplankton community in the late summers of 2017–2020 (cyano-period) with up to 110 µg Chlorophyll-a/L, but had not been observed in the river in the previous 20 years. From June to September, the average discharge in the Moselle was reduced to 69–76% and water temperature was 0.9–1.8 °C higher compared to the reference period. Nitrogen (N), phosphorus (P) and silica (Si) declined since 1997, albeit total nutrient concentrations remained above limiting conditions in the study period. Cyanobacterial blooms correlated best with low discharge, high water temperature and low nitrate. We conclude that the recent cyanobacteria blooms have been caused by dry and warm weather resulting in low flow conditions and warm water temperature in the regulated Moselle. Under current climate projections, the Moselle may serve as an example for the future of regulated temperate rivers.

Keywords