Brazilian Journal of Pharmaceutical Sciences (Jun 2011)

13C NMR spectral data and molecular descriptors to predict the antioxidant activity of flavonoids

  • Luciana Scotti,
  • Mariane Balerine Fernandes,
  • Eric Muramatsu,
  • Vicente de Paula Emereciano,
  • Josean Fechine Tavares,
  • Marcelo Sobral da Silva,
  • Marcus Tullius Scotti

DOI
https://doi.org/10.1590/S1984-82502011000200005
Journal volume & issue
Vol. 47, no. 2
pp. 241 – 249

Abstract

Read online

Tissue damage due to oxidative stress is directly linked to development of many, if not all, human morbidity factors and chronic diseases. In this context, the search for dietary natural occurring molecules with antioxidant activity, such as flavonoids, has become essential. In this study, we investigated a set of 41 flavonoids (23 flavones and 18 flavonols) analyzing their structures and biological antioxidant activity. The experimental data were submitted to a QSAR (quantitative structure-activity relationships) study. NMR 13C data were used to perform a Kohonen self-organizing map study, analyzing the weight that each carbon has in the activity. Additionally, we performed MLR (multilinear regression) using GA (genetic algorithms) and molecular descriptors to analyze the role that specific carbons and substitutions play in the activity.Danos aos tecidos devido ao estresse oxidativo estão diretamente ligados ao desenvolvimento de muitos, senão todos, os fatores de sedentarismo e de doenças crônicas. Neste contexto, a busca de moléculas naturais, que participam da nossa dieta e que possuam atividade antioxidante, flavonóides, torna-se de grande interesse. Neste estudo, nós investigamos um conjunto de 41 flavonóides (23 flavonas e 18 flavonóis), relacionando suas estruturas e atividade antioxidante. Os dados experimentais foram submetidos à análise de QSAR (relações quantitativas estrutura-atividade). Dados de RMN 13C foram utilizados para realizar um estudo do mapa auto-organizável de Kohonen, analisando o peso que cada carbono tem na atividade. Além disso, realizamos uma MLR (regressão múltipla) usando GA (algoritmos genéticos) e descritores moleculares para avaliar a influência de carbonos e substituições na atividade.

Keywords