Pharmaceutics (Feb 2024)

Physiologically Based Pharmacokinetic (PBPK) Modeling to Predict CYP3A-Mediated Drug Interaction between Saxagliptin and Nicardipine: Bridging Rat-to-Human Extrapolation

  • Jeong-Min Lee,
  • Jin-Ha Yoon,
  • Han-Joo Maeng,
  • Yu Chul Kim

DOI
https://doi.org/10.3390/pharmaceutics16020280
Journal volume & issue
Vol. 16, no. 2
p. 280

Abstract

Read online

The aim of this study was to predict the cytochrome P450 3A (CYP3A)-mediated drug–drug interactions (DDIs) between saxagliptin and nicardipine using a physiologically based pharmacokinetic (PBPK) model. Initially, in silico and in vitro parameters were gathered from experiments or the literature to construct PBPK models for each drug in rats. These models were integrated to predict the DDIs between saxagliptin, metabolized via CYP3A2, and nicardipine, exhibiting CYP3A inhibitory activity. The rat DDI PBPK model was completed by optimizing parameters using experimental rat plasma concentrations after co-administration of both drugs. Following co-administration in Sprague–Dawley rats, saxagliptin plasma concentration significantly increased, resulting in a 2.60-fold rise in AUC, accurately predicted by the rat PBPK model. Subsequently, the workflow of the rat PBPK model was applied to humans, creating a model capable of predicting DDIs between the two drugs in humans. Simulation from the human PBPK model indicated that nicardipine co-administration in humans resulted in a nearly unchanged AUC of saxagliptin, with an approximate 1.05-fold change, indicating no clinically significant changes and revealing a lack of direct translation of animal interaction results to humans. The animal-to-human PBPK model extrapolation used in this study could enhance the reliability of predicting drug interactions in clinical settings where DDI studies are challenging.

Keywords