Animals (Dec 2024)

Transcriptome and Metabolome Insights into Key Genes Regulating Fat Deposition and Meat Quality in Pig Breeds

  • Suthar Teerath Kumar,
  • Yunlong Zheng,
  • Jing Xu,
  • Ziyi Zhao,
  • Qi Zhang,
  • Yunpeng Zhang,
  • Min Li,
  • Hong Zou,
  • Riaz Muhammad Azeem,
  • Wu-Sheng Sun,
  • Yuan Zhao,
  • Shu-Min Zhang

DOI
https://doi.org/10.3390/ani14243560
Journal volume & issue
Vol. 14, no. 24
p. 3560

Abstract

Read online

Meat quality is a complex trait that exhibits significant variation across pig breeds, and the regulatory mechanisms governing pork meat quality are not fully elucidated. We compared the transcriptomics and metabolomics of the longissimus dorsi (LD) muscle between the Songliao Black Pig (SBP) and Large White × Landrace Pig (LWLDP) to investigate breed-specific differences in meat quality and underlying regulatory pathways. The results showed that SBP meat had a higher marbling score and backfat thickness, a richer color, a lower shear force, and reduced drip loss. Fatty acid (FA) analysis identified 15 significant FAs in the LWLDP, with docosahexaenoic acid (DHA) in the SBP, while amino acid (AA) analysis revealed no breed-based differences. Transcriptome analysis identified 134 upregulated and 362 downregulated genes in the SBP. Protein–protein interaction (PPI) network analysis found 25 key genes, which are associated with muscle development, fat deposition, and overall meat quality, while genes in the insulin signaling pathway, such as PPP1R3B, PPARGC1A, SOCS1, EIF4E, PRKAR2A, PRKAG2, and FASN, play a crucial role in balancing fat metabolism and catabolism. Metabolomic analysis identified 89 upregulated and 10 downregulated metabolites in the SBP, primarily involved in fructose and mannose metabolism, amino acid biosynthesis, nucleotide sugar metabolism, and glucagon signaling pathways. Gene–metabolite association analysis found that the PPP1R3B gene had a strong association with Thr-Leu, Maltol, D-myo-Inositol-4-phosphate, and Fructose-6-phosphate, while MYOG correlated with Mannose-6-phosphate, Fructose-1-phosphate, Mannose-1-phosphate, and Glucose-6-phosphate. In contrast, NR4A3 and PPARGC1A showed a strong negative correlation with most upregulated metabolites. In conclusion, this study identified functional genes, elucidated the mechanisms associated with meat quality traits, and identified gene–metabolite associations involved in energy metabolism, muscle development, and fat deposition, providing valuable insights into the molecular mechanisms that regulate meat quality between pig breeds.

Keywords