The Astrophysical Journal (Jan 2024)
Parametric Decay of a Kinked Alfvén Wave Packet: 3D Magnetohydrodynamic Simulations
Abstract
Large amplitude Alfvénic fluctuations, sometimes leading to localized inversions of the magnetic field, called switchbacks, are a common but poorly understood phenomenon in the solar wind. In particular, their origin(s), evolution, and stability within solar wind conditions are yet to be fully understood. Simulations modeling switchbacks have previously studied their stability in 2D. Here, we investigate the decay process of Alfvén wave packets via MHD simulations in 3D by characterizing the effects of system size, aspect ratio, and propagation angle on the decay rate. We show that the initial wave packet is unstable to parametric instabilities that develop compressible and Alfvénic secondary modes in the plane of, and transverse to, the initial wave packet propagation direction. The growth of transverse modes, absent in 2D simulations, increases the decay rate of the wave packet. We finally discuss the implications of our results for lifetime estimates of switchbacks and wave energy conversion in the solar wind.
Keywords