Stem Cell Reports (Dec 2019)
Precision Health Resource of Control iPSC Lines for Versatile Multilineage Differentiation
Abstract
Summary: Induced pluripotent stem cells (iPSC) derived from healthy individuals are important controls for disease-modeling studies. Here we apply precision health to create a high-quality resource of control iPSCs. Footprint-free lines were reprogrammed from four volunteers of the Personal Genome Project Canada (PGPC). Multilineage-directed differentiation efficiently produced functional cortical neurons, cardiomyocytes and hepatocytes. Pilot users demonstrated versatility by generating kidney organoids, T lymphocytes, and sensory neurons. A frameshift knockout was introduced into MYBPC3 and these cardiomyocytes exhibited the expected hypertrophic phenotype. Whole-genome sequencing-based annotation of PGPC lines revealed on average 20 coding variants. Importantly, nearly all annotated PGPC and HipSci lines harbored at least one pre-existing or acquired variant with cardiac, neurological, or other disease associations. Overall, PGPC lines were efficiently differentiated by multiple users into cells from six tissues for disease modeling, and variant-preferred healthy control lines were identified for specific disease settings. : Ellis, Scherer, and colleagues apply precision health to upgrade iPSC quality for disease modeling. The resource provides control lines from four healthy individuals, clinical annotation of whole-genome variants, and identification of variant-preferred lines for neurologic and cardiac disease. Resource users demonstrated versatile differentiation into functional cells from six tissues, and CRISPR-edited cells phenocopied a cardiomyopathy model. Keywords: Personal Genome Project Canada, control iPSCs, whole-genome sequencing, gene editing, cellular phenotyping, disease modeling