Geosciences (May 2022)

Tsunamis Generated and Amplified by Atmospheric Pressure Waves Due to an Eruption over Seabed Topography

  • Taro Kakinuma

DOI
https://doi.org/10.3390/geosciences12060232
Journal volume & issue
Vol. 12, no. 6
p. 232

Abstract

Read online

Numerical simulations were generated using a nonlinear shallow-water model of velocity potential to study the fundamental processes of tsunami generation and amplification by atmospheric pressure waves. When an atmospheric pressure wave catches up with an existing tsunami that is propagating as a free wave over an abrupt change in water depth, the amplified tsunami propagates in the shallower water. An existing tsunami propagating as a free wave over a sloping seabed is also amplified by being passed by atmospheric pressure waves. When atmospheric pressure waves travel over an abrupt change in water depth, the water surface profile of tsunamis in the shallower water depends on both the interval of the atmospheric pressure waves and the phase of the tsunami-generation process over the change in water depth. Moreover, when atmospheric pressure waves travel over an abrupt change in water depth, the tsunami amplitude in the shallower water increases, as the water depth of the shallower area is decreased and the Proudman resonance is further reduced. When an atmospheric pressure wave train with positive pressure travels over a sloping seabed, the amplification of tsunami crests propagating as free waves is controlled by leaving the forced water waves following the atmospheric pressure waves. Conversely, the amplitudes of tsunami troughs propagating as free waves increase.

Keywords