Malaria Journal (Sep 2021)

Bio-efficacy and wash-fastness of a lambda-cyhalothrin long-lasting insecticide treatment kit (ICON® Maxx) against mosquitoes on various polymer materials

  • Patrick K. Tungu,
  • Wema S. Sudi,
  • Harparkash Kaur,
  • Stephen M. Magesa,
  • Mark Rowland

DOI
https://doi.org/10.1186/s12936-021-03909-6
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Long-lasting efficacy of insecticide-treated nets is a balance between adhesion, retention and migration of insecticide to the surface of netting fibres. ICON® Maxx is a twin-sachet ‘home-treatment kit’ of pyrethroid plus binding agent, recommended by the World Health Organization (WHO) for long-lasting, wash-fast treatment of polyester nets. While knitted polyester netting is widely used, fine woven polyethylene netting is increasingly available and nets made of cotton and nylon are common in Africa and Asia. It is important to investigate whether ICON Maxx is able to fulfill the WHO criteria of long-lasting treatment on a range of domestic fabrics to widen the scope for malaria protection. Methods This study was a controlled comparison of the bio-efficacy and wash-fastness of lambda-cyhalothrin CS, with or without binder, on nets made of cotton, polyethylene, nylon, dyed and undyed polyester. Evaluation compared an array of bioassays: WHO cone and cylinder, median time to knockdown and WHO tunnel tests using Anopheles mosquitoes. Chemical assay revealed further insight. Results ICON Maxx treated polyethylene and polyester netting met the WHO cone and tunnel test bio-efficacy criteria for LLIN after 20 standardized washes. Although nylon and cotton netting failed to meet the WHO cone and cylinder criteria, both materials passed the WHO tunnel test criterion of 80% mortality after 20 washes. All materials treated with standard lambda-cyhalothrin CS without binder failed to meet any of the WHO bio-efficacy criteria within 5 washes. Conclusion The bio-efficacy of ICON Maxx against mosquitoes on netting washed up to 20 times demonstrated wash durability on a range of synthetic polymer and natural fibres: polyester, polyethylene, nylon and cotton. This raises the prospect of making insecticide-binder kits into an effective approach for turning untreated nets, curtains, military clothing, blankets—and tents and tarpaulins as used in disasters and humanitarian emergencies—into effective malaria prevention products. It may provide a solution to the problem of reduced LLIN coverage between campaigns by converting commercially sourced untreated nets into LLINs through community or home treatment. It may also open the door to binding of non-pyrethroid insecticides to nets and textiles for control of pyrethroid resistant vectors.

Keywords