Remote Sensing (Mar 2021)
Land Subsidence Induced by Rapid Urbanization in Arid Environments: A Remote Sensing-Based Investigation
Abstract
The rapid increase in the population of many of the older major cities within the countries of the Saharan-Arabian Desert is steering vast and disorganized urban expansion and in many cases introducing adverse environmental impacts such as soil erosion, rise in groundwater levels, and contamination of shallow aquifers, as well as development of deformational features including land subsidence. Using the rapidly growing city of Riyadh (1992: 467 km2; 2018: 980 km2), the capital of the Kingdom of Saudi Arabia as a test site, we utilized Small Baseline Subset (SBAS) interferometric analyses of 2016 to 2018 Sentinel-1 images together with multi-temporal high-resolution images viewable on Google Earth, GPS, field, land use land cover (LULC), and geological data to assess the distribution and rates of land subsidence and their causal effects. Three main causes of subsidence were identified and assessed: (1) discharge of wastewater effluents from septic systems in newly urbanized areas that lead to an increase in soil moisture, rise in groundwater levels, waterlogging, and wetting and hydrocompaction of dry alluvium loose sediments causing land subsidence (up to −20 mm/y) in wadis and lowlands; (2) the subsurface dissolution of karst formation by wastewater effluents and the collapse of voids and cavities at depth under stresses introduced by heavy construction machinery, causing sagging and land subsidence (up to −5 mm/y); and (3) leveling, compaction, and degradation of municipal and building waste materials in organized landfills and disorganized dump sites that resulted in significant land subsidence (up to −21 mm/y) and differential settling that could jeopardize the stability of structures erected over these sites. Our findings highlight the potential use of the advocated integrated approach to assess the nature and extent of land deformation associated with rapid urban growth in arid lands, and to identify areas most impacted for the purpose of directing and prioritizing remediation efforts.
Keywords