BMC Cancer (Jun 2008)

Utility of <sup>18</sup>F-fluoro-deoxyglucose emission tomography/computed tomography fusion imaging (<sup>18</sup>F-FDG PET/CT) in combination with ultrasonography for axillary staging in primary breast cancer

  • Tamura Katsumi,
  • Hama Yukihiro,
  • Kondo Tadaharu,
  • Kondo Nobuo,
  • Fukatsu Kazuhiko,
  • Omata Jiro,
  • Asakawa Hideki,
  • Tsuda Hitoshi,
  • Ueda Shigeto,
  • Ishida Jiro,
  • Abe Yoshiyuki,
  • Mochizuki Hidetaka

DOI
https://doi.org/10.1186/1471-2407-8-165
Journal volume & issue
Vol. 8, no. 1
p. 165

Abstract

Read online

Abstract Background Accurate evaluation of axillary lymph node (ALN) involvement is mandatory before treatment of primary breast cancer. The aim of this study is to compare preoperative diagnostic accuracy between positron emission tomography/computed tomography with 18F-fluorodeoxyglucose (18F-FDG PET/CT) and axillary ultrasonography (AUS) for detecting ALN metastasis in patients having operable breast cancer, and to assess the clinical management of axillary 18F-FDG PET/CT for therapeutic indication of sentinel node biopsy (SNB) and preoperative systemic chemotherapy (PSC). Methods One hundred eighty-three patients with primary operable breast cancer were recruited. All patients underwent 18F-FDG PET/CT and AUS followed by SNB and/or ALN dissection (ALND). Using 18F-FDG PET/CT, we studied both a visual assessment of 18F-FDG uptake and standardized uptake value (SUV) for axillary staging. Results In a visual assessment of 18F-FDG PET/CT, the diagnostic accuracy of ALN metastasis was 83% with 58% in sensitivity and 95% in specificity, and when cut-off point of SUV was set at 1.8, sensitivity, specificity, and accuracy were 36, 100, and 79%, respectively. On the other hand, the diagnostic accuracy of AUS was 85% with 54% in sensitivity and 99% in specificity. By the combination of 18F-FDG PET/CT and AUS to the axilla, the sensitivity, specificity, and accuracy were 64, 94, and 85%, respectively. If either 18F-FDG PET uptake or AUS was positive in allixa, the probability of axillary metastasis was high; 50% (6 of 12) in 18F-FDG PET uptake only, 80% (4 of 5) in AUS positive only, and 100% (28 of 28) in dual positive. By the combination of AUS and 18F-FDG PET/CT, candidates of SNB were more appropriately selected. The axillary 18F-FDG uptake was correlated with the maximum size and nuclear grade of metastatic foci (p = 0.006 and p = 0.03). Conclusion The diagnostic accuracy of 18F-FDG PET/CT was shown to be nearly equal to ultrasound, and considering their limited sensitivities, the high radiation exposure by 18F-FDG PET/CT and also costs of the examination, it is likely that AUS will be more cost-effective in detecting massive axillary tumor burden. However, when we cannot judge the axillary staging using AUS alone, metabolic approach of 18F-FDG PET/CT for axillary staging would enable us a much more confident diagnosis.