To address the issue of serious torque pulsation and optimize the output characteristics of multi-acting cam ring motors at low speed, a sensitivity analysis was conducted on the parameters of the triangular groove at the valve plate. Firstly, a mathematical model of the flow area between the rotor hole and the valve plate hole was established. Then, a numerical simulation model was built to study the motor output characteristics. Finally, the coupling effect of the triangular groove parameters on the motor torque pulsation rate was analyzed based on the response surface methodology. The results show that the motor torque pulsation rate can be reduced by 55% when adjusting depth angle θ1, width angle θ2, and length l. The influence order of design parameters on the pulsation rate is θ1>l>θ2; among all parameter combinations, the coupling of the triangular groove between the depth angle and the length has the most significant effect on the pulsation rate.