Biogeosciences (Aug 2019)

Theoretical uncertainties for global satellite-derived burned area estimates

  • J. Brennan,
  • J. Brennan,
  • J. L. Gómez-Dans,
  • J. L. Gómez-Dans,
  • M. Disney,
  • M. Disney,
  • P. Lewis,
  • P. Lewis

DOI
https://doi.org/10.5194/bg-16-3147-2019
Journal volume & issue
Vol. 16
pp. 3147 – 3164

Abstract

Read online

Quantitative information on the error properties of global satellite-derived burned area (BA) products is essential for evaluating the quality of these products, e.g. against modelled BA estimates. We estimate theoretical uncertainties for three widely used global satellite-derived BA products using a multiplicative triple collocation error model. The approach provides spatially unique uncertainties at 1∘ for the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 burned area product (MCD64), the MODIS Collection 5.1 (MCD45) product, and the European Space Agency (ESA) Climate Change Initiative Fire product version 5.0 (FireCCI50) for 2001–2013. The uncertainties on mean global burned area for three products are 3.76±0.15×106 km2 for MCD64, 3.70±0.17×106 km2 for FireCCI50, and 3.31±0.18×106 km2 for MCD45. These correspond to relative uncertainties of 4 %–5.5 % and also indicate previous uncertainty estimates to be underestimated. Relative uncertainties are 8 %–10 % in Africa and Australia, for example, and larger in regions with less annual burned area. The method provides uncertainties that are likely to be more consistent with modelling and data analysis studies due to their spatially explicit properties. These properties are also intended to allow spatially explicit validation of current burned area products.